Acute glucocorticoid pretreatment suppresses stress-induced hypothalamic-pituitary-adrenal axis hormone secretion and expression of corticotropin-releasing hormone hnRNA but does not affect c-fos mRNA or fos protein expression in the paraventricular nucleus of the hypothalamus.

نویسندگان

  • A B Ginsberg
  • S Campeau
  • H E Day
  • R L Spencer
چکیده

Corticosterone regulates both basal and stress-induced hypothalamic-pituitary-adrenal (HPA) axis activity in a negative-feedback fashion. However, the cellular and molecular mechanisms of this negative feedback have yet to be explicitly characterized. By comparing stress-induced c-fos and corticotropin-releasing hormone (CRH) expression in the paraventricular nucleus (PVN), we may be able to determine whether acute glucocorticoid treatment affects the net neural excitatory input to the PVN (represented primarily by c-fos mRNA expression) or directly affects the ability of cells in the PVN to respond to that input (represented primarily by CRH hnRNA expression). In the following studies, we observed the effect of acute glucocorticoid (RU28362) treatment on subsequent HPA axis reactivity by measuring stress-induced plasma hormone concentration [corticosterone and adrenocorticotropic hormone (ACTH)] and gene expression (c-fos and CRH) in the PVN. First, we examined the dose-response relationship between systemically administered RU28362 (1-150 microg/kg, i.p) and suppression of the stress-induced corticosterone response. We then confirmed central nervous system access of the maximally suppressive dose of RU28362 (150 microg/kg) by an ex vivo radioligand binding assay. RU28362 selectively occupied the majority of glucocorticoid receptors in the hippocampus and hypothalamus while having no effect on mineralocorticoid receptors. In separate studies, RU28362 (150 microg/kg) and corticosterone (5 mg/kg) were injected i.p. 1 h before restraint stress. Compared to vehicle-treated controls, rats treated with RU28362 and corticosterone had substantially blunted stress-induced corticosterone and ACTH production, respectively. Furthermore, treatment with RU28362 significantly blunted stress-induced CRH hnRNA expression in the PVN. By contrast, neither RU28362 nor corticosterone treatment had an effect on stress-induced neuronal activation as measured by c-fos mRNA and its protein product in the PVN. This dissociation between c-fos and CRH gene expression suggests that glucocorticoid suppression of HPA activity within this time-frame is not a result of decreased excitatory neural input to the PVN, but instead depends on some direct effect of RU28362 on cells intrinsic to the HPA axis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential responses of hypothalamus-pituitary-adrenal axis immediate early genes to corticosterone and circadian drive.

The hypothalamus-pituitary-adrenal (HPA) axis diurnal cycle of activity is manifest in circadian rhythms of ACTH and corticosterone secretion, which in the rat peak around the onset of the dark period. This cycle is thought to be driven by daily fluctuations in activity of CRH neurons within the paraventricular nucleus of the hypothalamus (PVN), controlled by suprachiasmatic nucleus inputs. In ...

متن کامل

Stress-induced sensitization of the hypothalamic-pituitary adrenal axis is associated with alterations of hypothalamic and pituitary gene expression.

We have previously reported that inescapable tail shock (IS) produces persistent changes in hypothalamic-pituitary-adrenal (HPA) axis function. These changes are manifest as an elevation in basal corticosterone (CORT) levels, a sensitization of adrenocorticotropin hormone (ACTH) and CORT responses to subsequent challenge, and a failure of dexamethasone to suppress both the ACTH and CORT respons...

متن کامل

Specific and time-dependent effects of glucocorticoid receptor agonist RU28362 on stress-induced pro-opiomelanocortin hnRNA, c-fos mRNA and zif268 mRNA in the pituitary.

This study examined the effects of the glucocorticoid receptor (GR) agonist RU28362 on stress-induced gene expression in the pituitary of rats to investigate mechanisms of glucocorticoid negative feedback in vivo. In an initial experiment, acute restraint stress produced rapid (within 15 min) induction of c-fos mRNA, zif268 mRNA and pro-opiomelanocortin (POMC) hnRNA within the anterior and inte...

متن کامل

Divergence in the expression of molecular markers of neuronal activation in the parvocellular paraventricular nucleus of the hypothalamus evoked by alcohol administration via different routes.

Immediate early gene (IEG) expression has been routinely used by neuroscientists as an index of neuronal activation. In the case of the hypothalamic-pituitary-adrenal axis, induction of c-fos and/or NGFI-B mRNAs in the parvocellular paraventricular nucleus (pPVN) has been documented after a variety of stimuli that increase adrenocorticotropin (ACTH) in the systemic circulation. However, the fun...

متن کامل

Ghrelin Indirectly Activates Hypophysiotropic CRF Neurons in Rodents

Ghrelin is a stomach-derived hormone that regulates food intake and neuroendocrine function by acting on its receptor, GHSR (Growth Hormone Secretagogue Receptor). Recent evidence indicates that a key function of ghrelin is to signal stress to the brain. It has been suggested that one of the potential stress-related ghrelin targets is the CRF (Corticotropin-Releasing Factor)-producing neurons o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroendocrinology

دوره 15 11  شماره 

صفحات  -

تاریخ انتشار 2003